Difference between revisions of "Fullspreadsheet"

From Diogenes Institute
Jump to: navigation, search
(clarify algae cultivation overview)
Line 1: Line 1:
 
==Overview of the Algae System ==
 
==Overview of the Algae System ==
  
The algae system captures CO2 emissions for conversion to algae.  The sales of the algae is used to pay for the algae system, including:
+
The algae system captures CO2 emissions for conversion to algae.  Algae sales pay for the algae system, including:
  
 
* Carbon dioxide capture from electrical power plants,
 
* Carbon dioxide capture from electrical power plants,

Revision as of 15:48, 23 January 2017

Overview of the Algae System

The algae system captures CO2 emissions for conversion to algae. Algae sales pay for the algae system, including:

  • Carbon dioxide capture from electrical power plants,
  • Synthesis of ammonia,
  • Transport of the carbon dioxide and ammonia to the algae photobioreactors and
  • The photobioreactors themselves.

Other costs such as phosphorus, potassium, water purification, farm labor, etc. are also included.

The goal is to have enough profit from the algae sales to pay for the reengineering of fossil fuel power plants and, if possible, a reduction in the cost of electricity. In an extreme case, electricity could be given away as a byproduct of algae cultivation.

The way to read the system is to click on the first item: FutureGen Prime Elex Cost With CO2 and NH3 Sales ($/kWh)

This presents you with that page in the system.

The system presents as a number of such pages. Each page can be thought of as a spreadsheet cell. As in a spreadsheet cell, each page represents a quantity. he title of the page is the name of the variable being calculated. The formula being evaluated on each page is called its "Model":

Model
FutureGen Without Sequestration Elex Cost ($/kWh) - Net Revenue Available For CO2 Payments ($/kWh) - NH3 Profit Per FutureGen Energy ($/kWh)

Following that formula is the comment:

Comment
The Bottom Line
"FutureGen Prime" is an enhanced efficiency, near-zero emission version of the FutureGen technology. It requires an initial investment of approximately $7/W to capture the residual emissions from FutureGen, as well as shipment of all unmarketable emissions back to be buried in their coal mines of origin. Over an industrial learning curve, this investment drops to an overall average of $3.5682284993297/W. In addition, rather than using air as the oxidizer, air is separated into its constituent gases by liquefaction. The N2 is stored for use in a cold gas turbine for peak power, with a Carnot efficiency determined by the temperature difference between the boiling point of N2 and the waste heat temperature of FutureGen combustion, which uses O2. Residual gases are marketable products. Since it uses IGCC, hydrogen is available for ammonia synthesis. Both CO2 and NH3 are produced in the ratio required for algaculture and both add to the profitability of electrical generation.

The economic impact of CO2 photosynthesis on electric costs is reflected in the ultimate cost per kWh of electricity generated by fossil fuel plants. Here that cost is designated by the variable FutureGen Prime Elex Cost With CO2 and NH3 Sales ($/kWh) = 0.040631298558674. A negative number means the value of the CO2 is high enough that the fossil fuel plant can give away electricity and still make money.

In the table of variable names and values that follow, the primary control parameters are as follows:

(ShortTerm=0 or LongTerm=1)
(MVsSystem=1 or JBsSystem=0 or SolixSystem=0)
(NaturalGasSystem=0 or CoalSystem=1)
Default Amortization Interval Bond Rate (%/year)=.05
EquatorialOcean=0
Efficiency of cold gas turbine=0


MVsSystem (1) stands for Miguel Verhein's system, which is the Algasol LLC photobioreactor model "Alga6". It has a much lower cost photobioreactor vessel and support platform than the system described in the link to "the algae system" below which was developed by James Bowery as an alternative since other algae cultivation system costs were poorly documented or were verifiably uneconomic even at the macroengineering economies of scale. If "(1)" appears next to "MVsSystem" then the numbers below refer to MVsSystem's characteristics. EquatorialOcean (0) is a speculative system that is being modeled when its value is '1' that takes advantage of the high insolation of the equator and thermal buffering of the ocean.

The primary inputs to the algae system are H2O, CO2 and NH3, delivered by pipeline. A complete breakdown of inputs is given in the Chemistry section of the spreadsheet.

The cost basis for the algae system is given in the AreaCost section of the spreadsheet, as costs are levelized and normalized to cost flow per insolated area of photobioreactor surface.

The market basis for the algae system is given in the Net section of the spreadsheet and the protein price per unit mass. See The Foresight project Global Food and Farming Futures final report for the long-term price outlook for protein.

Total system quantities (such as total land area required, total profit, etc.) are given in the Global section of the spreadsheet.

Employment figures are given in the Employment section of the spreadsheet.

Price supports to secure investment in the system are given in the PriceSupports section of the spreadsheet.

Environmental impact of the reengineered coal baseload power generation is given in the FutureGen section of the spreadsheet. These estimates are normalized per baseload power.

As thermal issues are a frequent failure mode of algae projects there is a dedicated Thermal section of the spreadsheet.

Net

FutureGen Prime Elex Cost With CO2 and NH3 Sales ($/kWh) 0.040631298558674
Net Revenue Available For CO2 Payments ($/kWh) 0.027686666352358
Powdered Coal Elex Cost ($/kWh) 0.1
Highly Dispatchable With Intermittent Elex Generation Cost Per Electrical Energy ($/kWh) 0.090701252843885
Fischer-Tropsch Diesel Price Per Volume ($/barrel) 43.398235107186
Algae Cost Per Mass ($/kg) 0.44418113966117
Marketable price per mass ($/kg) 0.5025
Net Revenue Available For CO2 Payments ($/kWh) 0.027686666352358
Net Per CO2 Mass ($/kg) 0.029159430169419
Photobioreactor Solar Photosynthetic Efficiency 0.0578
Gross Photosynthetic Efficiency 0.08
FutureGen IGCC Oxycoal Efficiency 0.375
Annualized Insolation (W/m^2) 219
Annualized Insolation Deviation (W/m^2) 30
Grid Power of Fixed Carbon Per Photobioreactors Area (W/m^2) 4.8823722466158
Annualized Photosynthetic Insolation (W/m^2) 167.535
Algae production rate per area (kg/s/m^2) 6.4385789612616E-7
Trophic Ratio of Algae to ? 1
Fishmeal Price Per Mass ($/kg) 1.6
Algae To Fishmeal Protein Ratio 0.62461538461538
Protein Fraction Of Fishmeal .65
Fishmeal Protein Price Per Mass ($/kg) 2.4615384615385
Algae Price As Fishmeal Protein Replacement ($/kg) 0.99938461538461
Marketable production rate per area (metricton/year/hectare) 203.04702612235
Marketable production rate per area (kg/day/m^2) 0.0556293222253
Marketable production rate per area (kg/s/m^2) 6.4385789612616E-7
Gross Cash Flow Per Algae Photobioreactors Area ($/s/m^2) 3.235385928034E-7
Net Cash Flow Per Area Available For CO2 Payments ($/s/m^2) 3.754905872224E-8
Net Per Grid Energy Available For CO2 Payments ($/J) 7.6907406534328E-9
Net Cash Flow Per Grid Power Available For CO2 Payments ($/s/W) 7.6907406534328E-9
Net Cash Flow Per Grid Power Available For CO2 Payments ($/year/GW) 242535197.24666

AreaCost

Total Cost Flow Per Area ($/s/m^2) 2.8598953408116E-7
Algae Photobioreactors Cost Per Area ($/m^2) 20.070566666667
Algae Photobioreactors Cost Flow Per Area ($/s/m^2) 8.2421049133771E-8
Land Cost Flow ($/m^2/s) 0
Photobioreactor Land Area Per FutureGen Primary (non-LN2) Power (m^2/W) 0.46614524631054
Photobioreactor Land Area Per FutureGen Primary (non-LN2) Power (mi^2/GW) 179.97961189099
Stainless sheet metal for hemipipes areal cost ($/m^2) 0
Stainless sheet metal for hemipipes areal mass (kg/m^2) 0
Stainless sheet metal density (kg/m^3) 7874
Stainless sheet metal for hemipipes areal thickness (m) 0.0015913100016231
Pyrex Flexural Strength (Pa) 69000000
Pyrex rupture thickness (m) 0.0073987954366264
Negative Pressure Endured at Top End of Pyrex (Pa) 94430.25
Pyrex Hemipipe Pressure (Pa) 92348.930204081
Pyrex Pressure Safety Factor 2.5
Pyrex Fracture Pressure (Pa) 230872.3255102
Pyrex Thickness With Safety Factor (m) 0.018496988591566
Minimum Manufacturable Pyrex Thickness (m) 0.0015
Pyrex Support Span (m) 0.2
Borax Price Per Mass ($/kg) 0.44
Boron Price per Pyrex Area ($/m^2) 4.8935742629631
Energy Per Mass of Pyrex Production (J/kg) 6512830
Energy Cost of NG ($/J) 4.9557115880187E-9
Volumetric Cost of NG ($/m^3) 0.19
Volumetric Energy of NG (J/m^3) 38339600
NG Volume per Pyrex (m^3/kg) 0.16987214264103
Energy Cost per Pyrex Area ($/m^2) 1.331317550884
Pyrex density (kg/m^3) 2230
Hemipipes Linear Density (pipes/m) 5
Tempered Pyrex thickness (m) 0.018496988591566
Pyrex Per Area (kg/m^2) 41.248284559192
Pyrex Price Per Area ($/m^2) 6.2248918138471
Algae Solar Collector Platform Load (kg/m^2) 81.248284559192
Algae Solar Collector Platform Critical Load (kg/m^2) 243.74485367758
Strand-board Cost per Volume (dollar/board_foot) 4.7194744393264
Strand-board Cost per Volume (dollar/m^3) 2000
Strand-board Modulus of Rupture for Stranded Bamboo (Pa) 129787000
Strand-board Modulus of Elasticity for Stranded Bamboo (Pa) 13131100000
Volume of strand-board per area (m^3/m^2) 0.00042900778023503
Strand-board cost per area ($/m^2) 0.85801556047006
Tensile support cost per length ($/m) 2
Tensile support cost per area ($/m^2) 10
Photobioreactors support platform cost per area ($/m^2) 2.665
Photobioreactors Support Platform Depreciation Interval (seconds) 315360000
Photobioreactors Support Platform Depreciation Interval (years) 10
Photobioreactors Support Platform Bond Interest Rate .05
Photobioreactors Support Platform Cost Flow Per Area ($/year/m^2) 0.34512969228294
Photobioreactors Support Platform Cost Flow Per Area ($/sec/m^2) 1.0943990749713E-8
Growth Medium Depth (average) (m) 0.04
Water mass per area (kg/m^2) 40
Distilled Water Cost Per Mass ($/kg) 0.00121
Distilled Water Cost Per Area ($/m^2) 0.0484
Hemipipe Hydraulic Diameter (m) 0.13333333333333
Hemipipe Area Section (m^2) 0.02
Hemipipe Wetted Perimeter (m) 0.6
Hemipipe Turbulent Reynolds Number 8000
Hemipipe Flow Velocity (m/s) 0.060000000000002
Hemipipe Flow Velocity (m/d) 5184.0000000002
Water Kinematic Viscosity (m^2/s) 1.0E-6
Hemipipe Volume Flow Rate Calculated (m^3/s) 0.0012
Hemipipe Friction Factor 0.024
Hemipipe Cycle Head Loss (m) 0.21223555402901
Hemipipe Cycle Length (m) 38.516822768224
Hemipipe Half Cycle Length (m) 19.258411384112
Hemipipe Hectare Length (m) 50000
Hemipipe Pressure Loss (Pa) 2081.3197959186
Hemipipe Pressure loss (psi) 0.30187023400683
Pump Volume Flow Rate (m^3/s) 0.096
Power Per Pump (W/pump) 199.87495536236
Pump Electrical Efficiency 0.3
Electric Power Per Pump (W/pump) 333.12492560393
Pump Cost (dollar/pump) 100
Oxygen Effluent Impurity Recycler Cost (dollar/liquefactor) 500
Electric Power per O2 Effluent Impurity Recycler (W/liquefactor) 232.52348851531
Dewaterer Cost (dollar/dewaterer) 20
Electric Power Per Dewaterer (W/dewaterer) 114.27545305964
Counterflow Gas Recycler Cost (dollar/CGR) 20
Electric Power Per CGR (W/dewaterer) 2
Photobioreactor Processor Cost (dollar/Photobioreactor Processor) 1149.1543203073
Photobioreactor Processor Cost Per Area (dollar/m^2) 2.1905
Photobioreactor Processor Cost Flow Per Area (dollar/s/m^2) 6.9460299340436E-9
Photobioreactor Processor Cycle Time (s) 641.94704613705
Photobioreactor Processor Cycle Time (h) 0.17831862392696
Photobioreactor Processor Cycle Time (d) 0.0074299426636233
Area Per Photobioreactor (m^2/Photobioreactor) 308.13458214579
Photobioreactor Length (m) 19.258411384112
Photobioreactor Width (m) 16
Hemipipes Per Photobioreactor 80
Hemipipe Cycles Per Photobioreactor 80
Gas injection to Hemipipes Cost Per Photobioreactor ($) 100
Photobioreactors Per Area (Photobioreactors/hectare) 32.453351812581
Photobioreactors Per Area (Photobioreactors/farm) 649.06703625162
Electric Power Per Photobioreactor Processor (W/Photobioreactor Processor) 681.92386717888
Photobioreactor Processor Electric Power Per Area (W/m^2) 2.2130715170952
Baseload Electric Power Per Area (W/m^2) 2.2130715170952
Baseload Electricity Cost ($/kWh) 0.1
Electricity Cost ($/J) 2.7777777777778E-8
Off-peak Electricity Cost ($/kWh) 0.04
Off-peak Electricity Cost ($/J) 1.1111111111111E-8
Baseload Electricity Cost Flow Per Algae Photobioreactors Area ($/s/m^2) 6.14742088082E-8
Photobioreactors Cost Per Area Under Default Amortization Rate ($/m^2) 20.070566666667
Default Amortization Interval (years) 10
Default Amortization Interval (seconds) 315360000
Default Amortization Interval Bond Rate (%/year) .05
Photobioreactors Cost Flow Per Area Under Default Amortization Rate ($/year/m^2) 2.5992302054826
Photobioreactors Cost Flow Per Area Under Default Amortization Rate ($/s/m^2) 8.2421049133771E-8
Area Per Farm (m^2/farm) 200000
Area Per Farm (hectares/farm) 20
Labor Rate (burdened) ($/s/farm) 0.0039682539682541
Labor Rate (burdened) Per Algae Photobioreactors Area ($/s/m^2) 1.984126984127E-8
Ammonia Price Per Mass ($/kg) 0.88185
Ammonia Price Per Mass Estimated as Off-peak Electric Synthesis ($/kg) 0.52910933333333
Ammonia Electric Synthesis Power Per Area (W/m^2) 4.7629503692768
Nitrogen Consumption Rate Per Area Estimated From Algae Production (kg/s/m^2) 6.8892794885499E-8
Ammonia Consumption Rate Per Area (kg/s/m^2) 1.0002029341713E-7
Sulfur Consumption Rate Per Area (kg/s/m^2) 5.8591068547481E-9
Phosphorus Consumption Rate Per Area (kg/s/m^2) 7.1468226470004E-9
Potassium Consumption Rate Per Area (kg/s/m^2) 3.2192894806308E-9
Calcium Consumption Rate Per Area (kg/s/m^2) 3.2192894806308E-9
Magnesium Consumption Rate Per Area (kg/s/m^2) 9.9797973899555E-9
H3BO3 Consumption Rate Per Area (kg/s/m^2) 7.258034465422E-10
Iron Consumption Rate Per Area (kg/s/m^2) 2.3874250788358E-10
(NH4)6Mo7O24 Consumption Rate Per Area (kg/s/m^2) 2.0580457751176E-10
MnCl24H2O Consumption Rate Per Area (kg/s/m^2) 4.6357768521084E-10
Cu2SO4 Consumption Rate Per Area (kg/s/m^2) 2.2611072572619E-10
ZnSO47H2O Consumption Rate Per Area (kg/s/m^2) 5.6521876377488E-10
Sulfur Cost Per Mass ($/kg) 0.55
Diammonium Phosphate Cost Per Mass ($/kg) 0.3
Phosphorus Cost Per Mass ($/kg) 1.2774193548387
Potassium Cost Per Mass ($/kg) 1.06
Calcium Cost Per Mass ($/kg) 0.2
Magnesium Cost Per Mass ($/kg) 0.6
H3BO3 Cost Per Mass ($/kg) 1.625
Iron Cost Per Mass ($/kg) 2.25
(NH4)6Mo7O24 Cost Per Mass ($/kg) 64
MnCl24H2O Cost Per Mass ($/kg) 15
Cu2SO4 Cost Per Mass ($/kg) 3
ZnSO47H2O Cost Per Mass ($/kg) 2.35
Ammonia Cost Flow Per Area ($/s/m^2) 8.8202895749896E-8
Sulfur Cost Flow Per Area ($/s/m^2) 3.2225087701115E-9
Phosphorus Cost Flow Per Area ($/s/m^2) 9.1294895748779E-9
Potassium Cost Flow Per Area ($/s/m^2) 3.4124468494686E-9
Calcium Cost Flow Per Area ($/s/m^2) 6.4385789612616E-10
Magnesium Cost Flow Per Area ($/s/m^2) 5.9878784339733E-9
H3BO3 Cost Flow Per Area ($/s/m^2) 1.1794306006311E-9
Iron Cost Flow Per Area ($/s/m^2) 5.3717064273806E-10
(NH4)6Mo7O24 Cost Flow Per Area ($/s/m^2) 1.3171492960753E-8
MnCl24H2O Cost Flow Per Area ($/s/m^2) 6.9536652781626E-9
Cu2SO4 Cost Flow Per Area ($/s/m^2) 6.7833217717857E-10
ZnSO47H2O Cost Flow Per Area ($/s/m^2) 1.328264094871E-9
Macronutrient Cost Flow Per Area ($/s/m^2) 8.9730847199908E-8
Micronutrient Cost Flow Per Area ($/s/m^2) 3.0480092084434E-8
Nutrient Cost Flow Per Area ($/s/m^2) 1.2021093928434E-7
Partial Crude Oil Consumption Rate Per Area Due To Ammonia Synthesis (kg/s/m^2) 0
Partial Natural Gas Consumption Rate Per Area Due To Ammonia Synthesis (kg/s/m^2) 0
Partial Coal Consumption Rate Per Area Due To Ammonia Synthesis (kg/s/m^2) 0
Partial Natural Gas Consumption Rate Per Area Due To Pyrex Depreciation (kg/s/m^2) 0
Volumetric NG Consumption Per Pyrex Area (m^3/s/m^2) 0
Natural Gas Consumption Rate Per Area (kg/s/m^2) 2.333840690005E-8
Carbon Fixation Rate per Area estimated from photosynthesis enthalpy per carbon mass (kg/s/m^2) 3.2538017829051E-7
Water Consumption Rate Per Area (kg/s/m^2) 1.6096447403154E-7
Water Consumption Rate Per Area (kg/s/laborerarea) 0.032192894806308
Water Cost Flow Per Area ($/s/m^2) 1.9476701357816E-10
Oxygen Mass Evolution Rate Per Area (kg/s/m^2) 1.0865101997129E-6
Oxygen Depth Evolution Rate (m/s) 7.603290410867E-7
Oxygen Depth Evolution Rate (s/mm) 1315.2200507438
Oxygen Depth Evolution Rate (hour/mm) 0.36533890298439
Gas Relief Valve Spacing (m) 78.913203044631
Oxygen Effluent Rate Per Area (kg/s/photobioreactor) 0.00033479136638567
Oxygen Effluent Volume Flow Per Area (m^3/s/farm) 0.15206580821734
Oxygen Effluent Volume Flow Per Area (m^3/s/photobioreactor) 0.00023428367136856
Oxygen Effluent Volume Flow Per Area (ml/s/photobioreactor) 234.28367136856
Mass Fraction of Oxygen Effluent Impurities 0.5
Oxygen Effluent Impurity Rate Per Area (kg/s/photobioreactor) 0.00033479136638567
National CO2 Pipeline Cost Per Area ($/m^2) 0.58511628451148
National CO2 Pipeline Depreciation Cost Flow Per Area ($/s/m^2) 3.6457054548306E-9
National CO2 Pipeline Transport Cost Flow Per Area ($/s/m^2) 2.8871903889445E-9
Carbon Fixation Rate per Area estimated from heat of combustion of d-glucose (kg/s/m^2) 3.2514823754371E-7
Carbon Fixation Rate per Area estimated from heat of combustion of algae (kg/s/m^2) 2.7664424912039E-7
Carbon Photosynthetic Fixation Rate per Area (kg/s/m^2) 3.2514823754371E-7
CO2 Photosynthetic Fixation Rate per Area (kg/s/m^2) 1.1922102043269E-6
CO2 Photosynthetic Fixation Rate per Area (kg/day/m^2) 0.10300696165384
CO2 Volume Flow Per Area (m/s) 6.0212636582167E-7
CO2 Volume Flow Per Area (m/day) 0.052023718006992
CO2 Volume Flow Per Area (in/day) 2.3647144548633
Pyrex mass depreciation rate per area (kg/s/m^2) 0
CO2 effluent overhead of Pyrex per area (kg/s/m^2) 0
CO2 effluent overhead of Ammonia synthesis from wind electric per area (kg/s/m^2) 6.9459534120274E-9
CO2 effluent overhead of base load electric per area (kg/s/m^2) 0
CO2 effluent overhead of CO2 transport per area (kg/s/m^2) 1.9870170072116E-8
CO2 effluent overhead per area (kg/s/m^2) 4.0644653324151E-7
CO2 effluent overhead exponential base 0.34091851568322
CO2 effluent overhead loaded area increase 1.5172630756524

Thermal

Best Growth Temperature High (C) 38
Best Growth Temperature Low (C) 35
Growth Medium Depth (average) (m) 0.04
Daily Swing of Air Temperature (deltaC) 16.6667
Worst High: Temperature of Air (C) 46
Worst High: Peak Insolation(W/m^2) 1000
Worst High: Nightime Low Temperature of Air (C) 29.3333
Worst High: Temperature of Uncooled Growth Medium (C) 115.3178227859
Decomposition Temp of NH4HCO3 (C) 40
Worst High: Energy to Absorb Per Medium Mass (J/kg) 315340.66044001
Energy Absorbed Per CO2 Evolved from NH4HCO3 (J/kg) 3283344.7744785
Worst High: CO2 Mass Evolved Per Medium Mass 0.09604250607221
Worst High: NH4HCO3 Fraction Decomposed 0.44464123181579
Worst High: CO2 Mass Evolved Per Area (kg/m^2) 3.8417002428884
Worst High: CO2 Volume Evolved Per Area (m) 1.9402526479234
Worst High: CO2 Volume Evolved Per Area (in) 88.193302178336
Worst Low: Temperature of Air (C) -6.666667
Worst Low: Peak Insolation (W/m^2) 83
Worst Low: Daytime High Temperature of Air (C) 10.000033
Worst Low: Temperature of Unheated Growth Medium (C) 0.47004839122958
Worst Low: Energy to Emit Per Medium Mass (J/kg) 144570.0013956
Worst Low: CO2 Mass Dissolved Per Medium Mass 0.044031319074179
Worst Low: CO2 Volume Dissolved Per Area for Morning Heat (m) 0.022238039936454
Worst Low: CO2 Volume Dissolved Per Area for Morning Heat (in) 1.0108199971115
Worst Low: Fraction of CO2 Volume Used For Morning Heat 0.21588870867957
Effective Heating Per Area From NH4HCO3 Formation (W/m^2) 0.90831844973896
CO2 Effluent Volume Input Rate Per Area (m/s) 1.3971931773757E-7
CO2 Effluent Volume Input Rate Per Area (m/day) 0.012071749052526
CO2 Mass Deviation Per Area At Spring Equinox (kg/m^2) 2.587447462135E-6
CO2 Mass Deviation Per Area At Autumnal Equinox (kg/m^2) -2.587447462135E-6
CO2 Mass Buffering Capacity Per Area Required (kg/m^2) 5.17489492427E-6
NH4HCO3 Mass Buffering Capacity Per Area Required (kg/m^2) 9.2957621707132E-6
Growth Medium Mass Per Area (average) (kg/m^2) 40
NH4HCO3 Mass Buffering Capacity Per Area Available (kg/m^2) 8.64
Fraction of NH4HCO3 Mass Buffering Capacity Used 1.0758983993881E-6

Chemistry

Nitrogen Fraction of Algae 0.107
Carbon Fraction of Algae 0.505
Protein fraction of algae 0.406
Mass Ratio of H2O Consumed to Algae Grown 1.32812
Mass Ratio of O2 Evolved to Algae Grown 1.6875
Protein Fraction Of Soybeans .375
Algae To Soybean Protein Ratio 1.0826666666667
Carbon Fraction of CO2 0.27272727272727
Sulfur Fraction of Algae 0.0091
Phosphorus Fraction of Algae 0.0111
Calcium Fraction of Algae 0.005
Potassium Fraction of Algae 0.005
Magnesium Fraction of Algae 0.0155
H3BO3 Fraction of Algae 0.0011272727272727
Iron Fraction of Algae 0.0003708
NaHCO3 Fraction of Zarrouk's Medium 0.018
Zarrouk's Medium To Algae Fraction Multiplier 106.06060606061
(NH4)6Mo7O24 Fraction of Algae 0.00031964285714286
MnCl2 4H2O Fraction of Algae 0.00072
Cu2SO4 Fraction of Algae 0.0003511811023622
ZnSO47H2O Fraction of Algae 0.00087786259541985
Algae C:N Ratio 4.7196261682243
Carbon Heat of Combustion (J/kg) 27000000
Algae Heat of Combustion (J/kg) 23106900
d-glucose heat of combustion (J/kg) 15558400
Carbon fraction of d-glucose 0.399645
Photosynthesis standard enthalpy per carbon mass (J/kg) 38902800
Haber-Bosch Process Mass Ratio of Natural Gas to Ammonia 1.38028
Coal to ammonia process C to NH3 mass ratio 4
Ammonia Electric Synthesis Energy Per Mass (J/kg) 47619840
Ammonia Electric Synthesis Energy Per Mass (kWh/ton) 12000
NH3 Liquid Density (kg/m^3) 681.9
Heat of Formation of Ammonium Bicarbonate (J/kg)
Solubility of Ammonium Bicarbonate (kg/m^3) 216
Mass Fraction of Ammonium Bicarbonate in Saturated Medium 0.216
Molecular weight of Ammonium Bicarbonate 79.056
Molecular weight of CO2 44.01
Oxygen Fraction of CO2 0.72727272727273
CO2 Mass Fraction of Ammonium Bicarbonate 0.55669398907104
CO2 Gas Density (kg/m^3) 1.98
CO2 effluent per wind electric energy (kg/J) 1.45833E-9
CO2 effluent per ammonia wind electric synthesized mass fraction 0.0694454412672
CO2 effluent per baseload electric energy (kg/J) 2.4418666666667E-7
Maximum allowable dissolved oxygen fraction (kg O2/kg water) 0.005
Energy per mole of O2 effluent impurity separated for reinjection J/mole 50000
Molecular Weight of O2 effluent impurity (kg/mole) 79056
Energy per Mass of O2 Effluent Impurity Separated for Reinjection (J/kg) 0.63246306415705
Atomic Weight of Phosphorous (g/mole) 31
Molecular Weight of Diammonium Phosphate (g/mole) 132
Phosphorous Fraction of Diammonium Phosphate 0.23484848484848
Diammonium Phosphate Fertilizer Mass Per Algae Mass 0.047264516129033
Molecular Weight of Ammonia (g/mole) 17
Ammonia Fraction of Dimmonium Phosphate 0.25757575757576
Solubility of Ammonium Phosphate (in H2O at 10C) 0.575
Diammonium Solution Mass Per Algae Mass 0.082199158485275
P2O5 Fraction of Late Permian Phosphoria Formation Rock 0.125
Molecular Weight of P2O5 (g/mole) 141.94
Phosphorous Fraction of P2O5 0.43680428350007
Phosphorous Fraction of Late Permian Phosphoria Formation Rock 0.054600535437509
Late Permian Phosphoria Formation Rock Fraction Per Algae Mass 0.20329470967742
Molecular Weight of Dolomite (g/mole) 184.4
Atomic Weight of Magnesium (g/mole) 24.3
Magnesium Fraction of Dolomite 0.13177874186551
Dolomite Mass Per Algae Mass 0.11762139917695
Atomic Weight of Calcium (g/mole) 40.078
Calcium Fraction of Dolomite 0.21734273318872
Dolomite Mass Per Algae Mass Required for Calcium 0.071315933928839
Potassium Fraction of K2O 0.83011252653928
Potassium Atomic Weight (g/mole) 39.0983
Molecular Weight of K2O (g/mole) 94.2
K2O Mass Per Algae Mass 0.006023279784543
Molecular Weight of (NH4)6Mo7O24 (g/mole) 1163.8
Molybdenum Atomic Weight (g/mole) 95.94
Molybdenum Fraction of (NH4)6Mo7O24 0.57705791373088
Molecular Weight of MnCl2 4H2O (g/mole) 197.9
Manganese Atomic Weight (g/mole) 54.94
Manganese Fraction of MnCl2 4H2O 0.27761495704901
Electric Energy Per Pyrex Mass (J/kg) 6680920
CO2 Overhead Per Pyrex Mass 0
Soda Glass Density (kg/m^3) 2500
Soda Ash Fraction of Soda Glass 0.16
Sulfur Fraction of H2SO4 0.32692699836868
Molecular Weight of H2SO4 (g/mol) 98.08
Atomic Weight of Sulfur (g/mol) 32.065
Oxygen Fraction of Air 0.2
Water to Carbon Molar Ratio for Syngas (C+H2O to CO2 + H) 1
Molecular Weight of H2O (g/mol) 18.01056
H2O to CO2 Mass Ratio for Syngas (C+H2O to CO2 + H) 0.40923790047716
H2O to NH3 Mass Ratio for Electrolysis HB 1.5891670588235
Atomic Weight of Nitrogen (g/mole) 14.00674
Nitrogen Fraction of Ammonia 0.82392588235294
Iron Density (kg/m^3) 7874
Pyrex Boron Mass Fraction 0.04
Pyrex Density (kg/m^3) 2230
Boron Fraction of Borax 0.14835164835165
Natural Gas Density (kg/m^3) 0.8
Heat of Combustion of Natural Gas (J/kg) 53498300
Heat of Combustion of Ammonia (J/kg) 22539000

Employment

TOTAL Unskilled Jobs Created Directly 953909.01883086
TOTAL Skilled Jobs Created Directly 1459413.227936
TOTAL Jobs Created (including indirect) 9170624.5377141
Construction labor fraction of CO2 pipeline cost 0.385
Overhead Labor fraction of CO2 pipeline cost 0.205
Labor fraction of gas pipeline cost 0.59
Labor cost of CO2 pipeline ($) 41300000000
Labor cost flow rate of CO2 pipeline ($/s) 130.96144089295
Skilled labor fraction of gas pipeline labor cost 0.7
Real Time Fraction of Full Time Job 0.23809523809524
Skilled labor pay rate ($/hour) 60
Skilled labor pay rate ($/s) 0.016666666666667
Skilled labor cost flow ($/s) 0.0039682539682541
Skilled jobs created for CO2 pipelline 5500.3805175038
Unskilled labor pay rate ($/hour) 37.5
Unskilled labor pay rate ($/s) 0.010416666666667
Unskilled labor cost flow ($/s) 0.0024801587301588
Unskilled jobs created for CO2 pipeline 3771.6894977168
Employment duration per installed wind power (y/MW) 15.1
Employment duration per installed wind power (s/W) 476.1936
Employment duration for installed wind power (s) 2.71341027434E+14
Duration for installed wind power (s) 315360000
Jobs for installed wind power 0
Jobs for installed electric NH3 synthesis 500000
Moso Strandboard Volume Production (m^3/s) 0.16274753380722
Strandboard Volume Shift Production (m^3/shiftday) 11.5
Strandboard Volume Shift Production (m^3/s) 0.00039930555555556
Strandboard Production Lines 407.57643249112
Skilled jobs per strandboard production line 102
Unskilled jobs per strandboard production line 300
Skilled strandboard production line jobs 41572.796114094
Unskilled strandboard production line jobs 122272.92974734
Raw Moso to Strandboard Dry Mass Ratio 1.2
Raw Moso Volume Depth Growth Rate (m/s) 2.06606E-10
Moso Volume Growth Rate (m^3/s) 0.19529704056866
Moso Growth Area (m^2) 945263160.64713
Moso Growth Area (acres) 233579.25331171
Moso Areal Harvest Rate Per Harvester (m^2/s) 6.1
Moso Areal Volume At Harvest (m^3/m^2) 0.0065199895056
Moso Volume Harvest Rate Per Harvester (m^3/s) 0.03977193598416
Continuous Harvester Equivalents 4.910423285566
Moso Harvester Driver Jobs 14.731269856698
Moso Areal Harvest Rate (m^2/s) 29.953582041953
Moso Areal Planting Rate During Year One (m^2/s) 29.953582041953
Moso Planting Cost Per Area ($/m^2) 0.15
Moso Planting Cost Flow During Year One ($/s) 4.4930373062929
Moso Planting Jobs During Year One 1811.5926418972
Moso Volume Flow Per Truck (m^3/s) 0.00256093
Continuous Moso Truck Equivalents 76.260202570418
Moso Truck Driver Jobs 228.78060771125
FutureGen Construction Labor Fraction 0.5
FutureGen Construction Labor Cost ($) 1295903451208.8
Skilled Fraction of FutureGen Construction Labor 0.5
FutureGen Construction Skilled Labor Cost ($) 647951725604.4
FutureGen Construction Unskilled Labor Cost ($) 647951725604.4
FutureGen Construction Duration 315576000
FutureGen Construction Skilled Labor Cost Flow ($/s) 2053.2351180204
FutureGen Construction Skilled Jobs 517415.24974112
FutureGen Construction Unskilled Labor Cost Flow ($/s) 2053.2351180204
FutureGen Construction Unskilled Jobs 827864.3995858
Algae Farmer Jobs 598171.69554973
Algae Farms 598171.69554975

FutureGen

Plant Efficiency 0.375
Fraction of Carnot efficiency of LN2 cold gas turbine 0.5
LN2 boiling temperature (K) 77.36
Waste heat temperature (H2O boiling) (K) 373.15
Ambient air temperature (K) 297
Specific Heat Air (J/kg/degK) 1004.83
Specific Energy of Liquid Air at Ambient (J/kg) 220700.8612
Specific energy cost to liquefy air (J/kg) 441401.7224
Air liquefaction energy fraction of elex 0.39194332819558
Specific energy of liquid air at waste heat temp (J/kg) 297218.6657
Carnot efficiency of LN2 at waste heat temp 0.79268390727589
Cold gas turbine LN2 power fraction of elex 0
Efficiency of cold gas turbine 0
Sub-bituminous Heat of Combustion (J/kg) 19306
Sub-bituminous Mass Flow Per FG Power (kg/s/W) 0.00013812631651645
Sub-bituminous CO2 Per Energy (kg/J) 9.157E-8
Sub-bituminous CO2 Flow Per FG Power (kg/s/W) 2.4418666666667E-7
Sub-bituminous O2 Flow Per FG Power (kg/s/W) 1.7759030303031E-7
Sub-bituminous Air Liquefaction Flow Per FG Power (kg/s/W) 8.8795151515155E-7
Sub-bituminous N2 Liquefaction Flow Per FG Power (kg/s/W) 7.1036121212124E-7
Cold gas turbine LN2 power per FG Power 0
Plant Power (W) 275000000
FutureGen Power (J/year) 8.67834E+15
Cold gas turbine LN2 power (W) 0
Futuregen Plant Water Consumption (kg/s) 189.26666666667
Futuregen Water Consumption Per Power (kg/s/W) 6.8824242424244E-7
Futuregen Plant Reagent H2O Consumption (kg/s) 27.480870667576
Futuregen Reagent H2O Consumption Per Power (kg/s/W) 9.9930438791184E-8
Futuregen Plant Aqueous Ammonia (19%) Consumption (kg/s) 0.038310898167161
Futuregen Aqueous Ammonia (19%) Consumption (kg/year) 1209000
Aqueous Ammonia (19%) Consumption Per Power (kg/s/W) 1.3931235697149E-10
Futuregen Plant H2SO4 (98%) Consumption (kg/s) 0.24967044388673
Futuregen Plant H2SO4 (98%) Consumption (kg/year) 7879000
Futuregen H2SO4 (98%) Consumption Per Power (kg/s/W) 9.0789252322447E-10
Futuregen Plant Antiscalant consumption (kg/s) 1.3308996881892E-5
Futuregen Plant Antiscalant consumption (kg/year) 420
Futuregen Antiscalant Consumption Per Power (kg/year/W) 4.8396352297789E-14
Futuregen Plant Sodium Hypochlorite Consumption (kg/s) 0.048387710092022
Futuregen Plant Sodium Hypochlorite Consumption (kg/year) 1527000
Sodium Hypochlorite Consumption Per Power (kg/s/W) 1.7595530942553E-10
Futuregen Plant Sodium Bisulfite Consumption (kg/s) 0.00034540015717292
Futuregen Plant Sodium Bisulfite Consumption (kg/year) 10900
Futuregen Sodium Bisulfite Consumption Per Power (kg/s/W) 1.2560005715379E-12
Futuregen Plant H2SO4 (95.8%) Consumption (kg/s) 0.13793824625447
Futuregen Plant H2SO4 (95.8%) Consumption (kg/year) 4353000
Futuregen H2SO4 (95.8%) Consumption Per Power (kg/s/W) 5.0159362274353E-10
Futuregen Plant Liquid Antiscalant and Stabilizer (kg/s) 0.0007959714100065
Futuregen Plant Liquid Antiscalant and Stabilizer (kg/year) 24500
Futuregen Liquid Antiscalant and Stabilizer Per Power (kg/s/W) 2.8944414909327E-12
Futuregen Plant Plant Lime Consumption (kg/s) 0.03555403452734
Futuregen Plant Plant Lime Consumption (kg/year) 1122000
Futuregen Lime Consumption Per Power (kg/s/W) 1.2928739828124E-10
Futuregen Plant Polymer Consumption (kg/s) 0.0084924075341598
Futuregen Plant Polymer Consumption (kg/year) 268000
Futuregen Polymer Consumption Per Power (kg/s/W) 3.0881481942399E-11
Futuregen Plant Physical Solvent Volumetric Consumption (m^3/s) 1.3554579562451E-6
Futuregen Plant Physical Solvent Volumetric Consumption (m^3/year) 42.775
Futuregen Physical Solvent Volumetric Consumption Per Power (m^3/s/W) 4.9289380227095E-15
Futuregen Warmer water (deltaK) 908.11025008804
Futuregen Bottom Slag Per Power (kg/s/W) 1.0116464398382E-8
Futuregen Fly Ash Per Power (if non-slagging gasifiers are used) (kg/s/W) 1.0125908380116E-8
Futuregen Plant Sulfur (kg/s) 1.1853246127716
Futuregen Plant Sulfur (kg/year) 37406000
Futuregen Sulfur Per Power (kg/s/W) 4.3102713191695E-9
Futuregen Marketable Bottom Slag Per Power (kg/s/W) 9.772504608837E-9
Futuregen Marketable Fly Ash Per Power (if non-slagging gasifiers are used) (kg/s/W) 4.2427556112684E-9
Futuregen Marketable H2SO4 Per Power (kg/s/W) 1.3184201184598E-8
Futuregen Plant Unrecycled bottom slag (kg/s) 0.094588942124876
Futuregen Plant Unrecycled bottom slag (kg/year) 2985000
Futuregen Unrecycled bottom slag per power (kg/s/W) 3.43959789545E-10
Futuregen Fraction Unrecycled bottom slag 0.034
Futuregen Plant Unrecycled ash (if non-slagging gasifiers are used) (kg/s) 1.6178670114331
Futuregen Plant Unrecycled ash (if non-slagging gasifiers are used) (kg/year) 51056000
Futuregen Unrecycled ash per power (if non-slagging gasifiers are used) (kg/s/W) 5.8831527688476E-9
Futuregen Fraction Unrecycled ash per power (if non-slagging gasifiers are used) 0.581
Futuregen Plant ZLD (wastewater system) clarifier Sludge (kg/s) 0.044426699115269
Futuregen Plant ZLD (wastewater system) clarifier Sludge (kg/year) 1402000
Futuregen ZLD (wastewater system) clarifier Sludge per power (kg/s/W) 1.6155163314643E-10
Futuregen Plant ZLD filter cake (kg/s) 0.15977133875833
Futuregen Plant ZLD filter cake (kg/year) 5042000
Futuregen ZLD filter cake per power (kg/s/W) 5.8098668639393E-10
Futuregen Plant Hg (kg/s) 2.78025E-6
Futuregen Mercury per power (kg/s/W) 1.011E-14
Futuregen Fraction Hg Captured by activated sulfur charcoal 0.9
Futuregen Plant Hg captured (kg/s) 2.502225E-6
Futuregen Plant Hg captured (kg/year) 77.0184855
Futuregen Hg captured per power (kg/s/W) 9.099E-15
Futuregen Fraction Hg Not Captured by activated sulfur charcol 0.1
Futuregen Plant Hg not captured (kg/s) 2.78025E-7
Futuregen Plant Hg not captured (kg/year) 8.77380174
Futuregen Hg not captured per power (kg/s/W) 1.011E-15
Futuregen Plant Sanitary solid waste (office and break room waste) (kg/s) 0.0092782721119477
Futuregen Plant Sanitary solid waste (office and break room waste) (kg/year) 305000
Futuregen Sanitary solid waste (office and break room waste) per power (kg/s/W) 3.3739171316173E-11

Global

Algae Photobioreactors Area Required for Existing Fossil Fuel Electric CO2 Fixation (m^2) 78848777795.843
Algae Photobioreactors Area Required for Whole System CO2 Fixation (m^2) 119634339109.95
Algae Photobioreactors Area Required for Whole System CO2 Fixation (mi^2) 46191.05759903
Land Area Required for Whole System (m^2) 179451508664.92
Land Area Required For Whole System (mi^2) 69286.586398543
Algae Biomass Output (kg/s) 77027.513883776
Algae Biomass Output (metricton/year) 2429139677.8388
Algae Biomass Output (kmetricton/year) 2429139.6778388
Algae Biomass Output (Mmetricton/year) 2429.1396778388
Algae Protein Output (kg/s) 31273.170636813
Algae Protein Output (metricton/year) 986230709.20253
Profit (dollar/s) 4492.1568244359
Profit (dollar/year) 141664621802.59
Current US NG Consumption Rate (ft^3/year) 23100000000000
Current US NG Volumetric Consumption Rate (m^3/year) 654119156275.2
Fraction of Current US NG Production Consumed By Whole System 0.16837754550749
Current US Carbon Emissions Due To Electric Generation (kg/year) 654545454545.45
Current US Carbon Emissions Due To Electric Generation (kg/s) 20741.29384191
Algae Photobioreactors Carbon Consumption Rate (Mmetricton/year) 809.05926805226
Current US Carbon Combustion Power Due To Electric Generation (W) 560014933731.56
Current Fraction US CO2 Emissions Due To Electric Generation 0.4
Current US CO2 Emissions (kg/year) 6000000000000
Current US CO2 Emissions Due To Electric Generation (kg/year) 2400000000000
US CO2 Production Due To FutureGen Electric (kg/year) 2966550649525
US CO2 Production Due To FutureGen Electric (kg/s) 94004.317486914
Current US Fossil Fuel Grid Power Estimated As Carbon Combustion (W) 210005600149.34
Peaking Power Displaced by LN2 Cold Gas Turbines from FutureGen (W) 0
Current US Grid Power From Fossil Fuel (W) 384969084390
Current Fraction US Grid Power From Fossil Fuel 0.699
Current US Grid Power Displaced by Primary (non-LN2) FutureGen (W) 384969084390
Current US Grid Power (W) 550742610000
Algae Photobioreactors Cost ($) 2401128978728.9
Nitrogen Macronutrient Consumption Rate (kg/s) 8241.943985564
FutureGen Initial Cost Per Installed Power (dollar/W) 7
FutureGen Capacity Per Industrial Learning Curve Unit (W) 300000000
FutureGen Industrial Learning Curve Rate 0.1
Cost to convert all fossil fuel electric to FutureGen (dollar) 2591806902417.5
FutureGen electric plant bond rate (%/year) 0.05
FutureGen electric plant depreciation interval (years) 10
FutureGen Plants Cost Flow ($/year) 424947775143.38
FutureGen Plants Cost Flow ($/s) 13465.78241512
NH3 Photosynthesis FOB Cost Flow ($/s) 2502.0187099033
NH3 Photosynthesis FOB Cost Per Volume ($/m^3) 170.475
Ammonia FOB Cost Per Mass ($/kg) .25
Ammonia Consumption Rate (kg/s) 11965.861700542
Ammonia Consumption Rate (metricton/year) 377678492.85421
Ammonia Consumption Rate (Mmetricton/year) 377.67849285421
Water Pipeline Cost Flow Safety Factor 2
NH3 Pipeline Friction Factor 0.1
NH3 Pipeline Cost Flow Safety Factor 5
NH3 Photosynthesis Cost Per Mass (at Yuma) ($/kg) 0.53958261702025
NH3 Photosynthesis Cost Per Volume (at Yuma) ($/m^3) 367.94138654611
NH3 Photosynthesis Pipelines Pumps Energy Cost Flow ($/s) 2627.7256814886
NH3 Photosynthesis Pipelines Amortization Cost Flow ($/s) 6760.9705475274
NH3 Photosynthesis Pipelines Transport Cost Flow ($/s) 2898.1645033897
NH3 Photosynthesis Consumption Rate (kg/s) 10008.074839613
NH3 Photosynthesis Volume Consumption Rate (m^3/s) 14.676748554939
NH3 Photosynthesis Consumption Rate (kg/y) 315614648142.04
NH3 Photosynthesis Pipeline Length (m) 70000000
NH3 Photosynthesis Pipeline Diameter (m) 2.4384
NH3 Photosynthesis Pipelines 5
NH3 Photosynthesis Pipeline Amortization Interval (s) 315360000
NH3 Photosynthesis Pipeline Amortization Interval (years) 10
NH3 Photosynthesis Pipeline Bond Interest (%/year) 0.05
Steel Pipe Maintenance Cost Per Length Per Time ($/m/s) 1.37925E-8
Distilled Water Photosynthesis Cost Per Mass (at Yuma) ($/kg) 0.0010126307382958
Distilled Water Photosynthesis Cost Per Volume (at Yuma) ($/m^3) 1.0126307382958
Distilled Water Photosynthesis Pipelines Pumps Energy Cost Flow ($/s) 2.1652986776868
Distilled Water Photosynthesis Pipelines Amortization Cost Flow ($/s) 55.112402988638
Distilled Water Photosynthesis Pipelines Transport Cost Flow ($/s) 3.8875612710817
Distilled Water Photosynthesis Consumption Rate (kg/s) 19256.878470944
Distilled Water Photosynthesis Volume Consumption Rate (m^3/s) 19.256878470944
Distilled Water Photosynthesis Consumption Rate (kg/y) 607284919459.69
Distilled Water Pipeline Friction Factor 0.1
Distilled Water Photosynthesis Pipeline Length (m) 445788
Distilled Water Photosynthesis Pipeline Diameter (m) 2.4384
Distilled Water Photosynthesis Pipelines 16
Distilled Water Photosynthesis Pipeline Amortization Interval (s) 315360000
Distilled Water Photosynthesis Pipeline Amortization Interval (years) 10
Distilled Water Photosynthesis Pipeline Bond b86 (%/year) 0.05
Distilled Water Photosynthesis FOB Cost Flow ($/s) 14.057521283789
Desalinated Water FOB Cost Per Volume ($/m^3) 0.73
Nitrogen Macronutrient Consumption Rate Estimated From Carbon Consumption Rate (Mmetricton/year) 171.42443897345
Ammonia Macronutrient Consumption Rate Estimate from Carbon Consumption Rate (Mmetricton/year) 208.05808221961
Natural Gas Consumption Rate (kg/s) 2792.0748853666
Natural Gas Consumption Rate (Mmetricton/year) 88.050873584921
Natural Gas Volumetric Consumption Rate (m^3/year) 110138978003.05
Natural Gas Volumetric Consumption Rate (m^3/s) 3490.0936067082
Current Natural Gas Volumetric Production Rate of the US (m^3/s) 18461
National CO2 Pipeline Length (m) 70000000
CO2 Pipeline (30in diameter) Cost Per Length (dollar/m) 1000
National CO2 Pipeline Cost (dollars) 70000000000
National CO2 Pipeline Amortization Interval (s) 315360000
National CO2 Pipeline Amortization Interval (years) 10
National CO2 Pipeline Bond Interest (%/year) 0.05
National CO2 Pipeline Cost Flow (dollars/year) 9065320247.582
National CO2 Pipeline Cost Flow (dollars/s) 287.45941931703
Width of Contiguous 48 States (m) 5000000
Average Distance Traversed by CO2 In National CO2 Pipeline (m) 833333.33333333
CO2 Pipeline Transport Cost Per Mass Distance ($/kg/m) 4.40925E-9
CO2 Pipeline Mass Distance Rate (kg*m/s) 78336931239.095
CO2 Pipeline Transport Cost Flow ($/s) 345.40711406598
CO2 overhead of CO2 pipe transport per length (1/m) 2.0E-8
CO2 effluent overhead of CO2 pipe transport (kg/s) 1566.7386247819
O2 Production Rate (kg/s) 129983.92967887
Energy Per Mass O2 Extraction from Air via Cryogenics (J/kg) 864000
Power Value of O2 Effluent At Photobioreactors As O2 Extracted from Air (W) 112306115242.54
Strand-board Volume (m^3) 51324062.261444
Strand-board Volume Consumption Rate (m^3/s) 0.16274753380722
Strand-board Volume Consumption Rate (m^3/year) 5132406.2261445
Strand-board Density (kg/m^3) 1280
Strand-board Mass Consumption Rate (kg/year) 6569479969.465
Carbon Density of Strand-board (kg/m^3) 242
Carbon Fixation Rate of Strand-board Consumption (kg/year) 1242042306.727
CO2 Fixation Rate of Strand-board Consumption (kg/year) 4554155124.6657
CO2 Fixation Rate Per Area of Moso Bamboo Plantation (kg/year/m^2) 8.66238
Sustained Area of Moso Bamboo Plantation Required (m^2) 525739476.2947
Sustained Area of Moso Bamboo Plantation Required (acres) 129912.8532898
Moso Cost Per Pole (dollars) 3.25
Moso Poles Rate Per Area (pole/year/m^2) 0.296526
Strand-board Volume Rate per Area of Moso Bamboo Plantation (m^3/year/m^2) 0.006767484375
Moso Revenue Rate Per Area (dollar/year/m^2) 0.9637095
Moso Cost Per Volume (dollar/m^3) 142.40291467241
Municipal Solid Waste Generated in the US (kg/s) 11880.6
MSW Tipping Fees (dollar/kg) 0.0363763
Pyrex Consumption Rate (kg/s) 0
Pyrex Consumption Rate (metricton/year) 0
Pyrex Cost Flow ($/year) 744710818180.54
Pyrex Volumetric Consumption Rate (m^3/s) 0
Pyrex Volumetric Consumption Rate (m^3/year) 0
Equivalent Glass Consumption Rate (metricton/year) 0
Soda Ash Consumption Rate for Equivalent Soda Glass 0
US Soda Ash Production (metricton/year) 10900000
Raw Material Fraction of Soda Glass Cost 0.17
Soda Ash Fraction of Raw Material Cost for Soda Glass 0.6
Soda Ash Fraction of Soda Glass Cost 0.102
Soda Ash Cost Per Mass ($/metricton) 286.6006
Soda Glass Cost Per Mass ($/metricton) 2809.8098039216
Raw Material Cost of Soda Glass ($/metricton) 477.66766666667
Equivalent Glass Cost Flow ($/year) 0
Silica Sand Cost Per Mass ($/metricton) 191.06706666667
Energy Cost Per Soda Glass Mass ($/metricton) 590.06005882354
Soda Glass Energy Fraction of Fused Silica Energy 0.5
Fused Silica Cost Per Mass ($/metricton) 3703.3293215687
Equivalent Fused Silica cost flow ($/year) 0
Photobioreactors 388253529.60008
Number of Levels In Distribution/Gathering Binary Fractal for Photobioreactors 28.532423799264
Desalination potential (factor of PBR need) 4
Diammonium Phosphate Solution Consumption Rate (kg/s) 6331.5968214592
Diammonium Phosphate Solution Consumption Rate (metricton/day) 547049.96537407
Diammonium Phosphate Consumption Rate (kg/s) 3640.668172339
Diammonium Phosphate Consumption Rate (metricton/day) 314553.73009009
Diammonium Phosphate Consumption Rate (metricton/year) 114890749.91541
Late Permian Phosphoria Formation Rock Consumption Rate (kg/s) 15659.286072176
Late Permian Phosphoria Formation Rock Consumption Rate (metricton/day) 1352962.316636
Late Permian Phosphoria Formation Rock Consumption Rate (metricton/year) 494169486.1513
Dolomite Consumption Rate (kg/s) 9060.0839581317
Dolomite Consumption Rate (metricton/day) 782791.25398258
Dolomite Consumption Rate (metricton/year) 285914505.51714
Potash (K2O) Consumption Rate (kg/s) 463.95826722975
Potash (K2O) Consumption Rate (metricton/day) 40085.99428865
Potash (K2O) Consumption Rate (metricton/year) 14641409.413929
(NH4)6Mo7O24 Consumption Rate (kg/s) 24.621294616421
(NH4)6Mo7O24 Consumption Rate (metricton/day) 2127.2798548588
(NH4)6Mo7O24 Consumption Rate (metricton/year) 776988.96698718
Molybdenum Consumption Rate (kg/s) 14.207912904705
Molybdenum Consumption Rate (metricton/day) 1227.5636749665
Molybdenum Consumption Rate (metricton/year) 448367.63228151
MnCl24H2O Consumption Rate (kg/s) 55.459809996319
MnCl24H2O Consumption Rate (metricton/day) 4791.727583682
MnCl24H2O Consumption Rate (metricton/year) 1750178.4999399
Manganese Consumption Rate (kg/s) 15.396472770074
Manganese Consumption Rate (metricton/day) 1330.2552473344
Manganese Consumption Rate (metricton/year) 485875.72908889

Futuregen Inputs and Outputs

Futuregen Input Water Consumption (kg/s) 264952.05589897
Futuregen Input Reagent H2O Consumption (kg/s) 38470.129524133
Futuregen Input Aqueous Ammonia (19%) Consumption (kg/s) 53.630950507527
Futuregen Input H2SO4 (98%) Consumption (kg/s) 349.51055339025
Futuregen Input Antiscalant Consumption (kg/s) 0.018631099431896
Futuregen Input Sodium Hypochlorite Consumption (kg/s) 67.737354363105
Futuregen Input Sodium Bisulfite Consumption (kg/s) 0.48352139001826
Futuregen Input H2SO4 (95.8%) Consumption (kg/s) 193.09803768344
Futuregen Input Liquid Antiscalant and Stabilizer (kg/s) 1.1142704905848
Futuregen Input Lime Consumption (kg/s) 49.771651339494
Futuregen Input Polymer Consumption (kg/s) 11.888415827972
Futuregen Input Physical Solvent Volumetric Consumption (m^3/s) 0.0018974887576175
Futuregen Refinable Output Bottom Slag (kg/s) 3894.5260367092
Futuregen Refinable Output Fly Ash (if non-slagging gasifiers are used) (kg/s) 3898.1616777103
Futuregen Refinable Output Sulfur (kg/s) 1659.3212032132
Futuregen Marketable Refined Output Bottom Slag (kg/s) 3762.112151461
Futuregen Marketable Refined Output Fly Ash (if non-slagging gasifiers are used) (kg/s) 1633.3297429605
Futuregen Marketable Refined Output H2SO4 (kg/s) 5075.5098584482
Futuregen Hazardous Waste Unmarketable Bottom Slag (kg/s) 132.41388524812
Futuregen Hazardous Waste Unmarketable Fly Ash Per Power (if non-slagging gasifiers are used) (kg/s) 2264.8319347498
Futuregen Hazardous Waste ZLD (wastewater system) clarifier Sludge (kg/s) 62.19238429409
Futuregen Hazardous Waste ZLD filter cake (kg/s) 223.66191270385
Futuregen Hazardous Waste Hg captured (kg/s) 0.0035028336988646
Futuregen Hazardous Waste Hg not captured (kg/s) 0.00038920374431829
Futuregen Municipal Sanitary Solid Waste (office and break room waste) (kg/s) 12.988537889664

PriceSupports

Algae price support per dry mass ($/kg) 0.5025
CO2 FOB price support per mass ($/kg) 0.1432464250059
Efficiency incentive on CO2 FOB Price Support 1
CO2 Delivered price support per mass ($/kg) 0.1469208000059
NH3 FOB price support per mass ($/kg) .25
NH3 Delivered price support per mass ($/kg) Template:NH3 Delivered price support per mass ($/kg)